1,147 research outputs found

    Ground state and constrained domain walls in Gd/Fe multilayers

    Full text link
    The magnetic ground state of antiferromagnetically coupled Gd/Fe multilayers and the evolution of in-plane domain walls is modelled with micromagnetics. The twisted state is characterised by a rapid decrease of the interface angle with increasing magnetic field. We found that for certain ratios M(Fe):M(Gd), the twisted state is already present at low fields. However, the magnetic ground state is not only determined by the ratio M(Fe):M(Gd) but also by the thicknesses of the layers, that is the total moments of the layer. The dependence of the magnetic ground state is explained by the amount of overlap of the domain walls at the interface. Thicker layers suppress the Fe aligned and the Gd aligned state in favour of the twisted state. Whereas ultrathin layers exclude the twisted state, since wider domain walls can not form in these ultrathin layers

    Ruddlesden-Popper faults in LaNiO3/LaAlO3 superlattices

    Full text link
    Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is used to study LaNiO3/LaAlO3 superlattices grown on (La,Sr)AlO4 with varying single-layer thicknesses which are known to control their electronic properties. The microstructure of the films is investigated on the atomic level and the role of observed defects is discussed in the context of the different properties. Two types of Ruddlesden-Popper faults are found which are either two or three dimensional. The common planar Ruddlesden-Popper fault is induced by steps on the substrate surface. In contrast, the three-dimensionally arranged Ruddlesden-Popper fault, whose size is in the nanometer range, is caused by the formation of local stacking faults during film growth. Furthermore, the interfaces of the superlattices are found to show different sharpness, but the microstructure does not depend substantially on the single-layer thickness.Comment: 14 pages, 6 figure

    Digital modulation of the nickel valence state in a cuprate-nickelate heterostructure

    Full text link
    Layer-by-layer oxide molecular beam epitaxy has been used to synthesize cuprate-nickelate multilayer structures of composition (La2_2CuO4_4)m_m/LaO/(LaNiO3_3)n_n. In a combined experimental and theoretical study, we show that these structures allow a clean separation of dopant and doped layers. Specifically, the LaO layer separating cuprate and nickelate blocks provides an additional charge that, according to density functional theory calculations, is predominantly accommodated in the interfacial nickelate layers. This is reflected in an elongation of bond distances and changes in valence state, as observed by scanning transmission electron microscopy and x-ray absorption spectroscopy. Moreover, the predicted charge disproportionation in the nickelate interface layers leads to a thickness-dependent metal-to-insulator transition for n=2n=2, as observed in electrical transport measurements. The results exemplify the perspectives of charge transfer in metal-oxide multilayers to induce doping without introducing chemical and structural disorder

    Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin

    Get PDF
    We measured prokaryotic production and respiration in the major water masses of the North Atlantic down to a depth of,4,000 m by following the progression of the two branches of North Atlantic Deep Water (NADW) in the oceanic conveyor belt. Prokaryotic abundance decreased exponentially with depth from 3 to 0.4 3 105 cells mL21 in the eastern basin and from 3.6 to 0.3 3 105 cells mL21 in the western basin. Prokaryotic production measured via 3H-leucine incorporation showed a similar pattern to that of prokaryotic abundance and decreased with depth from 9.2 to 1.1 mmol C m23 d21 in the eastern and from 20.6 to 1.2 mmol C m23 d21 in the western basin. Prokaryotic respiration, measured via oxygen consumption, ranged from about 300 to 60 mmol C m23 d21 from,100 m depth to the NADW. Prokaryotic growth efficiencies of,2 % in the deep waters (depth range 1,200–4,000 m) indicate that the prokaryotic carbon demand exceeds dissolved organic matter input and surface primary production by 2 orders of magnitude. Cell-specific prokaryotic production was rather constant throughout the water column, ranging from 15 to 32 3 1023 fmol C cell21 d21 in the eastern and from 35 to 58

    Changing dynamics in problematic personality: A multiwave longitudinal study of the relationship between shyness and aggressiveness from childhood to early adulthood

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The present longitudinal study investigated cascade effects linking the longitudinal trajectories of shyness and aggressiveness between age 4 and 23 and individual differences in this longitudinal relationship. Results demonstrated that there were cascade effects from shyness to adjacent measures of aggressiveness at three moments in time, and that the dynamics of these relationships changed over time. Children who were shy at age 6 became less aggressive at age 7 and the same effect was found between age 8 and age 10. From adolescence to early adulthood, the direction of the relationship changed and shy adolescents at age 17 became increasingly aggressive 5 years later. Interindividual differences were found in the latter cascade effect in that shyness at age 17 only predicted an increase in aggressiveness at age 23 for adolescents receiving low levels of support from their parents and for adolescents spending little time in part-time work. Together, findings suggest the importance of examining the development of normal variations in personality and personality disorders from a developmental perspective and taking into account person–environment interactions.Peer Reviewe

    Role of Macroscopic Particles in Deep-Sea Oxygen Consumption

    Get PDF
    Macroscopic particles (\u3e 500 µg), including marine snow, large migrating zooplankton, and their fast-sinking fecal pellets, represent primary vehicles of organic carbon flux from the surface to the deep sea. In contrast, freely suspended microscopic particles such as bacteria and protists do not sink, and they contribute the largest portion of metabolism in the upper ocean. In bathy- and abyssopelagic layers of the ocean (2,000-6,000 m), however, microscopic particles may not dominate oxygen consumption. In a section across the tropical Atlantic, we show that macroscopic particle peaks occurred frequently in the deep sea, whereas microscopic particles were barely detectable. In 10 of 17 deep-sea profiles (\u3e 2,000 m depth), macroscopic particle abundances were more strongly cross-correlated with oxygen deficits than microscopic particles, suggesting that biomass bound to large particles dominates overall deep-sea metabolism

    Atomic self-interaction correction for molecules and solids

    Full text link
    We present an atomic orbital based approximate scheme for self-interaction correction (SIC) to the local density approximation of density functional theory. The method, based on the idea of Filippetti and Spaldin [Phys. Rev. B 67, 125109 (2003)], is implemented in a code using localized numerical atomic orbital basis sets and is now suitable for both molecules and extended solids. After deriving the fundamental equations as a non-variational approximation of the self-consistent SIC theory, we present results for a wide range of molecules and insulators. In particular, we investigate the effect of re-scaling the self-interaction correction and we establish a link with the existing atomic-like corrective scheme LDA+U. We find that when no re-scaling is applied, i.e. when we consider the entire atomic correction, the Kohn-Sham HOMO eigenvalue is a rather good approximation to the experimental ionization potential for molecules. Similarly the HOMO eigenvalues of negatively charged molecules reproduce closely the molecular affinities. In contrast a re-scaling of about 50% is necessary to reproduce insulator bandgaps in solids, which otherwise are largely overestimated. The method therefore represents a Kohn-Sham based single-particle theory and offers good prospects for applications where the actual position of the Kohn-Sham eigenvalues is important, such as quantum transport.Comment: 16 pages, 7 figure
    • …
    corecore